
870 

Acta Cryst. (1980). A36, 870-872 

A Non-Central Fielek Model for Lattice Vibrations in Platinum 

BY R. M. AGaAWAL* AND R. P. S. RATHORE 

Department of Physics, RBS College, Agra 282 002, India 

(Received 18 March 1980; accepted 13 May 1980) 

Abstract 

The Fielek model is made simple and more effective by 
modifying it for (a) purely central and short-range ionic 
interactions, (b) angular interactions coupling the 
nearby d shells, (c) easily computable volume inter- 
actions and (d) for crystal equilibrium in complicated 
f.c.c, lattices. The model, involving a minimum number 
of input data, is tested for its validity in predicting the 
dispersion relations in platinum. 

Introduction 

Recently, much effort has been made to account for the 
lattice-dynamical behaviour of platinum. These studies 
involve first principle (Singh, Singh & Prakash, 1978; 
Tripathi & Nand, 1979) as well as phenomenological 
(Singh & Hemkar, 1974; Bertolo & Shukla, 1975; 
Kharoo, Gupta & Hemkar, 1977) calculations. The 
former calculations need drastic approximations to 
arrive at useful conclusions whereas the latter suffer 
from various shortcomings. Fielek (1975) developed a 
model which accounts for all the feasible interactions 
present among the constituents of a non-simple metal. 
This model has since been employed by Singh, Pathak 
& Hemkar (1978a,b) for the lattice-dynamical study of 
platinum. The model as compared to other contem- 
porary models seems to be more sound in its mathe- 
matical footings, but suffers with some deficiencies, 
which are accounted for in the present study. 

Rathore & Verma (1977) and Rathore (1978, 1979) 
have already established that the ionic interactions 
must be central pairwise. This conclusion is also 
supported by pseudopotential studies employing the 
second-order perturbation technique. The non-linear 
pseudopotential studies (Rasolt & Taylor, 1975; 
Dagens, Rasolt & Taylor, 1975) reveal that the 
interionic interactions should be limited to immediate 
neighbours in f.c.c, metals. In view of these findings, the 
present study modifies the Fielek model to express the 
interionic interactions as the first (~tl) and second (ill) 
derivatives of the central pairwise energy coupling the 
first neighbours only. 
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The electrons occupying the d shells overlap with the 
immediate environment leading to sd hybridization, 
which causes non-sphericity in charge distribution. This 
non-sphericity calls for unpaired or three-body forces, 
pointed out by Bertoni, Bisi, Calandra & Nizzoli 
( 1973), Bertoni, Bertolani, C alandra & Nizzoli (1974), 
Brovman, Kagan & Kholas (1970) and Lloyd & Sholl 
(1968) in their pseudopotential studies. These forces 
significantly contribute towards the Cauchy dis- 
crepancy exhibited by the metals. However, the 
corresponding computations are highly involved and 
unrewarding. It is therefore convenient and reasonable 
to assume angular forces of the Clark, Gazis & Wallis 
(1964) type to couple the d shells. These angular forces 
inherit the characteristic features of the three-body 
forces and may be used as a phenomenological 
substitute for them. The screening effect of the nearby 
conduction electrons limits these forces also to nearest 
neighbours only. 

The interactions among the ions and the d shells are 
accounted for on the lines of the Fielek (1975) model. 
Computational effort is reduced in calculating the 
volume interactions among the ions and the electrons 
Ioccupying sp (conduction) bands and the d shells] by 
adopting the scheme due to Bhatia (1955), which is 
modified for the inclusion of (i) a suitable inference 
factor G 2 required for the convergence of the 
expression and (ii) a proper dielectric function e(q) 
accounting for the exchange and correlation effects 
present among the electrons. The crystal equilibrium 
considered by Fielek (1978a) seems to be objection- 
able (Shukla, 1978; Fielek, 1978b) and tedious. It was 
therefore thought worthwhile to tackle the problem on 
simpler lines, which assume the equilibrium of the 
lattice under the combined effect of the volume- 
dependent energy of the ions, the d-shell electrons and 
the conduction electrons. The model is employed to 
derive the dispersion relations in platinum. It is found 
that the simple modified version of the Fielek model 
predicts the relations in platinum more reliably. 

Formulations 

The usual determinant solved for the normal fre- 
quencies (v) may be expressed as 

ID(q) - 4zr2m v 2 II -- 0, (1) 
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where m is the mass of the ion, I is the unit matrix of 
order three and D(q) is the dynamical matrix describ- 
ing the various interactions present in the f.c.c. 
structure. The elements of the matrix D(q) may be 
written 

D,~(q)  = - -4 ( f l  I + 2o:1) + 2(fll + 0:l)Ca(C~ + C F) 

K 2 A q2 G2(qrs)/2 
+ 40:1C~ C v + K + ~ + 

N [ 1 + q2/2~ e(q)]a' 

K 2 
D,,~(q) = - - 2 ( f l  I --al)Sot  S[j + K + , (2) 

N 

where C,, = cos (½aq,,), S o = sin (½aq,,), a is the lattice 
constant, r s the electron separation, /2 the atomic 
volume and q~, the ath component of the phonon wave 
vector q .K  is the parameter associated with the inter- 
actions among the ions and the d-shell electrons. The 
term N appearing in (2) may be obtained by solving 
the determinant 

I D ' ( q ) - N I I  = 0 ,  (3) 

where 

D',~ = 16K112 -- C,~(C~ + Cv)] 

-- 4K1(2C2, , - -  C 2 ~  - -  C2~,)  

A' q~ G2(qrsI)/2 
+ k -  

[1 + q2/2~e(q)]a' 

D'~(q)  = - 1 6 K  1S,, S~ + K, (4) 

where C2,, = cos (aq~), and K l is the angular force 
constant given by the scheme due to Clark, Gazis & 
Wallis (1964). A and A' are the deformability para- 
meters associated with the conduction and the d-shell 
electrons respectively. The inference factor G 2 is 
evaluated for the actual shape of the polyhedron. The 
screening parameters 2 e and 2 d associated with the 
conduction and the d-shell electrons respectively are 
evaluated in Bohm-Pines (1953) and Thomas-Fermi 
(Thomas, 1927; Fermi, 1928) limits respectively. The 
dielectric function e(q) may be written as 

e(q) = eu(q)[ 1 -  S(q)l, (5) 

where en(q) is the usual Hartree function and S(q) is 
the correction term, which is evaluated on the lines 
reported by Vasistha & Singwi (1972), i.e. 

S ( q ) = A  1-expk-~-~-v] ] . (6) 

Kv is the usual Fermi wave vector and A, B are the 
constants taken from the study of Vasistha & Singwi 
(1972). 

For considering the equilibrium of the lattice, the 
total energy (E) may be written as the sum of that due 
to ions (El), conduction electrons (Ee) and d-shell 

electrons (Ed), i.e. 

E =  E t + E e + E a. (7) 

For equilibrium c~E/&O should vanish, i.e. 

- - ( E t  + E e + Ea) = 0, (8) 

which can be transformed as 

40:1 
- - ( P c  + Pa), (9) 

a 

where Pe and Pa are the pressures associated with the 
conduction and d-shell electrons respectively. More- 
over, 

A = - - / 2 - -  a. (10) 
8/2 

The values of Pe and A (=aKe) have already been 
reported by Rathore & Agrawal (1980) for electron 
separations (rs) varying from 3 to 5. The present study 
adopts the quantitative values of Pe and A for r s = 3 
within the framework of the correlation scheme due to 
Wigner & Seitz (1934). The value of Pa is taken from 
the work of Khanna & Rathore (1980) for r~ = 1.5. 

Calculations 

The present model comprises six model parameters, 
three of which are calculated by the use of elastic 
relations, which are obtained by comparing the 
long-wave form of (1) with the usual Christofell 
equation of elasticity. Two of the model parameters are 
obtained from (9) and (10). The last model parameter is 
evaluated in terms of the zone-boundary frequency for 
the T mode along the direction [ff~(], i.e. 

4 n 2 m v 2 r = -  2 ( P l + 5 a l ) + K  + . ( l l )  
K + 48 K 1 

The input data and the computed model parameters are 
shown in Table 1. The calculated dispersion relations 
for platinum are shown in Fig. 1. The experimental 

Table 1. Input data and model parameters forplat inum 

Model parameters 
Input data (10 N m -I) 

C~' l = 3.580) th = 1.9725 
C~2 2.536 / x l0 l' N m -2 fll = -8.948 
C~' 4 0.774 / K l --- -0.1864 
a =3.9156A K = 31.0019 
V~Hll I= 2.90 A = 0.0704 
m = 195.02 a.m.u. A' = -5.9688 

* MacFarlane, Rayne & Jones (1965). 
t Dutton, Brockhouse & Miller (1972). 
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points (A, A, • )  due to Dutton, Brockhouse & Miller 
(1972) are also depicted on the same figure. 

Conclus ions  

The present model expresses the interactions among the 
various constituents of the non-simple metal in a 
consistent manner. The crystal equilibrium is properly 
accounted for in terms of a~, Pa and Pe" The 
quantitative values of Pe and A used in the present 
study sufficiently explain the cohesion and the lattice 
stability. The use of the Bhatia (1965) scheme makes 
the model less involved computationaUy. The simple 
model, using a minimum number of input data, is 
capable of reproducing all the essential features of the 
dispersion curves of platinum. The deviations for the L 
modes in the proximity of the zone boundary may be 
attributed to the well known aperiodic nature of the 
Bhatia (1955) scheme. The well known anomaly in the 
branch [~0]T~ may be associated with the volume- 
dependent interionic forces (Finnis, 1974). The an- 
harmonic effects (Taole, Glyde & Taylor, 1978) may 
also contribute towards this anomaly. 
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Fig. 1. Dispersion curves for platinum! ( ) computed from the 
model; A, A, • experimental points due to Dutton, Brockhouse & 

Miller (1972). 
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